

Self-Certification Runtime
Test Utility Users Guide

August 2007

Revision 1.0

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or controlled by

any of the authors or developers of this material or to any contribution thereto. The material contained herein is provided on an

"AS IS" basis and, to the maximum extent permitted by applicable law, this information is provided AS IS AND WITH ALL
FAULTS, and the authors and developers of this material hereby disclaim all other warranties and conditions, either express,
implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of
fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses
and of lack of negligence, all with regard to this material and any contribution thereto. Designers must not rely on the absence
or characteristics of any features or instructions marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any
features or instructions so marked for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

 ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO
DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY CONTRIBUTION THERETO. IN NO
EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE LIABLE TO ANY OTHER
PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR
ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT,
WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT,
WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2007 Unified EFI, Inc. All Rights Reserved

ii

 Contents
1 Introduction ...1

1.1 Overview ..1
1.2 Related Information..1
1.3 Terms...2
1.4 Conventions Used in this document...5

1.4.1 Data Structure Descriptions ..5
1.4.2 Pseudo-code Conventions ...6
1.4.3 Typographic Conventions..6

2 How to Build SCRT ..9
2.1 Overview ..9
2.2 Building SCRT..9

2.2.1 Source Code Overview ...9
2.2.2 Build Source Code ...10

3 How to Use SCRT..15
3.1 Overview ..15
3.2 System Configuration ...15
3.3 Run SCRT Utility ..15
3.4 Analyze SCRT Test Result ..18

3.4.1 COM1/COM2 output...18
3.4.2 Port 80 Display ...21
3.4.3 Each Assertion Information...22
3.4.4 System Hang..25

4 How to Add SCRT Test Cases..27
4.1 Overview ..27
4.2 Add Test Cases ..27
4.3 Example: Adding a Test Case ...28

Figures

Figure 1 Select Boot Manager ...16
Figure 2 Select Internal EFI Shell ..16
Figure 3 Switch to the device..17
Figure 4 Run SCRT Utility ...18
Figure 5 Terminal Software Configuration ...19
Figure 6 Capture log files ...20

Tables

Table 1 Build Tips in UEFI SCT Source Tree...10
Table 2 Port 80 display and Log file Relationship for Each assertion22

 iii

iv

 Revision History

Revision
Number

Description Revision
Date

1.0 Initial release. August 2007

§

1
Introduction

1.1 Overview

The document is intended for Self-Certification Runtime Test (SCRT) utility users.
SCRT is a toolset for platform firmware developers to validate UEFI Runtime Services
implementations on IA-32, x64, and Itanium Architecture-based platforms for
compliance to the UEFI 2.0 Specification. UEFI 2.0 Runtime services need to convert
their related pointers when exiting boot service environment. Through this, these
services are accessible in Runtime environment, typically virtual addressing mode.

Because the UEFI Self-Certification Test (SCT) Utility provides overall validation for
the UEFI implementation, including runtime services in the boot time phase, SCRT
acts as a supplement to SCT, and is intended for validating runtime services in a
runtime environment. SCT covers more function testing, but SCRT focuses on
simulating a runtime environment with virtual addressing mode and checking runtime
services pointers convert issues.

Therefore, the document has three main objectives:

• Describe how to obtain the resources to build SCRT utility

• Describe how to use the SCRT utility and how to analyze the test results

• Describe how to customize the Runtime Test Cases.

Following are the chapter classifications:

• Chapter 1: Introduction

• Chapter 2: How to build SCRT

• Chapter 3: How to use SCRT

• Chapter 4: How to add SCRT Test Cases

1.2 Related Information

The following publications and sources of information may be useful or are referred to
by this specification:

• Extensible Firmware Interface Specification, Version 1.10, Intel, 2001,
http://developer.intel.com/technology/efi.

• Unified Extensible Firmware Interface Specification, Version 2.0, Unified EFI,
Inc, 2006, http://www.uefi.org.

• UEFI 2.0 SCT Document, Test Source, and Binary Code,
http:// www.uefi.org/specs/download/

1

http://developer.intel.com/technology/efi
http://www.uefi.org/

Introduction

• Unified Extensible Firmware Interface Specification, Version 2.1, Unified EFI,
Inc, 2007, http://www.uefi.org.

• Platform Initialization Specification, Version 1.0, Unified EFI, Inc, 2006,
http://www.uefi.org.

• Intel® Platform Innovation Framework for EFI Specifications, Intel, 2006,
http://www.intel.com/technology/framework/.

1.3 Terms

The following terms are used throughout this document to describe varying aspects of
input localization:

BDS

Framework Boot Device Selection phase.

BNF

BNF is an acronym for “Backus Naur Form.” John Backus and Peter Naur
introduced for the first time a formal notation to describe the syntax of a
given language.

Component

An executable image. Components defined in this specification support
one of the defined module types.

DXE

Framework Driver Execution Environment phase.

DXE SAL

A special class of DXE module that produces SAL Runtime Services. DXE
SAL modules differ from DXE Runtime modules in that the DXE Runtime
modules support Virtual mode OS calls at OS runtime and DXE SAL
modules support intermixing Virtual or Physical mode OS calls.

DXE SMM

A special class of DXE module that is loaded into the System Management
Mode memory.

DXE Runtime

Special class of DXE module that provides Runtime Services

EFI

Generic term that refers to one of the versions of the EFI specification: EFI
1.02, EFI 1.10, or UEFI 2.0.

2

http://www.uefi.org/
http://www.uefi.org/
http://www.intel.com/technology/framework/

Introduction

EFI 1.10 Specification

Intel Corporation published the Extensible Firmware Interface
Specification. Intel donated the EFI specification to the Unified EFI Forum,
and the UEFI now owns future updates of the EFI specification. See UEFI
Specifications.

Foundation

The set of code and interfaces that glue implementations of EFI together.

Framework

Intel® Platform Innovation Framework for EFI consists of the Foundation,
plus other modular components that characterize the portability surface
for modular components designed to work on any implementation of the
Tiano architecture.

GUID

Globally Unique Identifier. A 128-bit value used to name entities uniquely.
An individual without the help of a centralized authority can generate a
unique GUID. This allows the generation of names that will never conflict,
even among multiple, unrelated parties.

HII

Human Interface Infrastructure. This generally refers to the database that
contains string, font, and IFR information along with other pieces that use
one of the database components.

IFR

Internal Forms Representation. This is the binary encoding that is used for
the representation of user interface pages.

Library Class

A library class defines the API or interface set for a library. The consumer
of the library is coded to the library class definition. Library classes are
defined via a library class .h file that is published by a package. See the
EDK 2.0 Module Development Environment Library Specification for a list
of libraries defined in this package.

Library Instance

A an implementation of one or more library classes. See the EDK 2.0
Module Development Environment Library Specification for a list of library
defined in this package.

Module

A module is either an executable image or a library instance. For a list of
module types supported by this package, see module type.

 3

Introduction

Module Type

All libraries and components belong to one of the following module types:
BASE, SEC, PEI_CORE, PEIM, DXE_CORE, DXE_DRIVER,
DXE_RUNTIME_DRIVER, DXE_SMM_DRIVER, DXE_SAL_DRIVER,
UEFI_DRIVER, or UEFI_APPLICATION. These definitions provide a
framework that is consistent with a similar set of requirements. A module
that is of module type BASE, depends only on headers and libraries
provided in the MDE, while a module that is of module type DXE_DRIVER
depends on common DXE components. For a definition of the various
module types, see module type.

Module Surface Area (MSA)

The MSA is an XML description of how the module is coded. The MSA
contains information about the different construction options for the
module. After the module is constructed the MSA can describe the
interoperability requirements of a module.

Package

A package is a container. It can hold a collection of files for any given set
of modules. Packages may be described as one of the following types of
modules:

• source modules, containing all source files and descriptions of a
module

• binary modules, containing EFI Sections or a Framework File System
and a description file specific to linking and binary editing of features and
attributes specified in a Platform Configuration Database (PCD,)

• mixed modules, with both binary and source modules

Multiple modules can be combined into a package, and multiple packages
can be combined into a single package.

Protocol

An API named by a GUID as defined by the EFI specification.

PCD

Platform Configuration Database.

PEI

Pre-EFI Initialization Phase.

PPI

A PEIM-to-PEIM Interface that is named by a GUID as defined by the PEI
CIS.

SAL

System Abstraction Layer. A firmware interface specification used on
Intel® Itanium® Processor based systems.

4

Introduction

Runtime Services

Interfaces that provide access to underlying platform-specific hardware
that might be useful during OS runtime, such as time and date services.
These services become active during the boot process but also persist
after the OS loader terminates boot services.

SEC

Security Phase is the code in the Framework that contains the processor
reset vector and launches PEI. This phase is separate from PEI because
some security schemes require ownership of the reset vector.

UEFI Application

An application that follows the UEFI specification. The only difference
between a UEFI application and a UEFI driver is that an application is
unloaded from memory when it exits regardless of return status, while a
driver that returns a successful return status is not unloaded when its
entry point exits.

UEFI Driver

A driver that follows the UEFI specification.

UEFI Specification Version 2.0

First version of the EFI specification released by the Unified EFI Forum.
This specification builds on the EFI 1.10 specification and transfers
ownership of the EFI specification from Intel to a non-profit, industry trade
organization.

Unified EFI Forum

A non-profit collaborative trade organization formed to promote and
manage the UEFI standard. For more information, see www.uefi.org.

1.4 Conventions Used in this document

This document uses the typographic and illustrative conventions described below.

 Data Structure Descriptions

Intel® processors based on 32 bit Intel® architecture (IA 32) are “little endian”
machines. This distinction means that the low-order byte of a multibyte data item in
memory is at the lowest address, while the high-order byte is at the highest address.
Processors of the Intel® Itanium® processor family may be configured for both “little
endian” and “big endian” operation. All implementations designed to conform to this
specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software
must initialize such fields to zero and ignore them when read. On an update
operation, software must preserve any reserved field.

1.4.1

 5

Introduction

 Pseudo-code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the
algorithms in this document are intended to be compiled directly. The code is
presented at a level corresponding to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A
queue is an ordered list of homogeneous objects. Unless otherwise noted, the ordering
is assumed to be First In First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate.
The coding style, particularly the indentation style, is used for readability and does not
necessarily comply with an implementation of the Extensible Firmware Interface
Specification.

1.4.2

1.4.3 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

Plain text

(Body)

The normal text typeface is used for the vast majority of the
descriptive text in a specification.

Plain text [blue]

(Cross-Reference)

Any plain text that is underlined and in blue indicates an active link to
the cross-reference. Click on the word to follow the hyperlink. USE
ONLY IF YOU MAKE AN ACTUAL CROSS-REFERENCE LINK.

Bold

(Bold or
GlossTerm)

In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph. or as a definition heading (GlossTerm)

Italic
In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace

(CodeCharacter
and
CodePargraph)

Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate
paragraphs, though words or segments can also be embedded in a
normal text paragraph.

Bold Monospace
Words in a Bold Monospace typeface that is underlined and in blue
indicate an active hyperlink to the code definition for that function or
type definition. Click on the word to follow the hyperlink. USE ONLY IF
YOU MAKE AN ACTUAL HYPERLINK.

Italic
Monospace

(ArgCharacter
and
ArgParagraph)

In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

6

Introduction

Plain Monospace
(CodeCharacter
+ Not Bold)

In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate
paragraphs.

See the glossary sections in the UEFI 2.0 Specification for definitions of terms and
abbreviations that are used in this document or that might be useful in understanding
the descriptions presented in this document.

See the references sections in the UEFI 2.0 Specification for a complete list of the
additional documents and specifications that are required or suggested for interpreting
the information presented in this document.

 7

Introduction

8

2
How to Build SCRT

2.1 Overview

This chapter introduces the Self-Certification Runtime Test (SCRT) Utility and focuses
on how to build the SCRT source code. Since SCRT is a supplement to SCT, it could be
built based on the SCT build infrastructure.

UEFI SCT is open source, located at http://www.uefi.org/specs/download/. Users may
download the UEFI SCT release package from the website.

To set up theSCT build environment, refer to the instructions in the documents UEFI
SCT Getting Started and UEFI SCT User Guide, which are included in the SCT release
package.

2.2 Building SCRT

 Source Code Overview

The SCRT source code package contains two modules: SCRTApp and SCRTDriver.
SCRTApp is an application and SCRTDriver is a runtime driver.

These two modules both support IA32, x64 (EM64T) and IPF (Itanium) tip. The
following are the source tree structures of SCRTApp and SCRTDriver.

2.2.1

9

How to build SCRT

SCRTApp\
 |----SCRTApp.c
 |----SCRApp.h
 |----SCRApp.inf
 |----ia32
 |---- GoVirtual.asm
 |---- VirtualMemory.c
 |----x64
 |---- GoVirtual.asm
 |---- VirtualMemory.c
 |----ipf
 |---- GoVirtual.S
 |---- VirtualMemory.c

SCRTDriver\
 |----Guid.h
 |----Guid.c
 |----Print.c
 |----TestCase.c
 |----SCRTDriver.c
 |----SCRTDriver.h
 |----SCRTDriver.inf
 |----ia32
 |---- Port80.asm
 |----x64
 |---- Port80.asm
 |----ipf
 |---- Port80.c

 Build Source Code

The SCRT utility needs to build based on the SCT build infrastructure.

Firstly, extract the SCT source code package to the location C:\Test\UefiSct.

The UEFI SCT supports three build tips: IA32, x64 (EM64T) and IPF (Itanium). Each is
given a hosting directory within the build tree. Table 1 lists these build tips.

Table 1 Build Tips in UEFI SCT Source Tree

2.2.2

Build Tip Description

C:\Test\UefiSct\Platform\IntelTest\UEFI\IA32 The UEFI build environment for IA32
Architecture-based platforms.

C:\Test\UefiSct\Platform\IntelTest\UEFI\x64 The UEFI build environment for EM64T-based
platforms.

C:\Test\UefiSct\Platform\ IntelTest\UEFI\IPF The UEFI build environment for Itanium
Architecture-based platforms.

Secondly, extract the SCRT source code package to the SCT source code tree
C:\Test\UefiSct\Platform\IntelTest\SCRT.

10

How to build SCRT

This way, the SCRT utility in the SCT source code tree structure appears as follows:

C:\Test\UefiSct\Platform\IntelTest\SCRT\
 |-----SCRTApp
 |--ia32
 |--x64
 |--ipf
 |---…..
 |-----SCRTDriver
 |--ia32
 |--x64
 |--ipf
 |---…..

2.2.2.1 IA32 Build Tip

Follow the steps below to build the SCT IA32 tip to include the SCRT utility:

1. Add SCRT Utility SCRTApp.inf and SCRTDriver.inf files into
C:\Test\UefiSct\Platform\IntelTest\UEFI\IA32\Build\UEFI_SCT_IA32.d
sc file [Components] field.

[Components]
…………………………………………………………………………………………………..

Components

SCRT Utility

Platform\IntelTest\SCRT\SCRTApp\SCRTApp.inf
Platform\IntelTest\SCRT\SCRTDriver\SCRTDriver.inf

2. Run Visual Studio .NET 2003 Command Prompt to go to the command line
environment. Then run the commands as given below:

a. cd C:\Test\UefiSct\Platform\IntelTest\UEFI\IA32\

b. set efi_source = C:\Test\UefiSct

c. nmake uefi

If the build is successful, the image files *.efi will be created in the directory
C:\Test\UefiSct\Platform\IntelTest\UEFI\IA32\uefi\IA32\.

If successful, SCRTApp.efi and SCRTDriver.efi will be located there also.

2.2.2.2 x64 Build Tip

Follow the steps below to build SCT x64 tip including SCRT utility:

1. Add SCRT Utility SCRTApp.inf and SCRTDriver.inf files into
C:\Test\UefiSct\Platform\IntelTest\UEFI\X64\Build\UEFI_SCT_X64.dsc
file [Components] field.

 11

How to build SCRT

[Components]
…………………………………………………………………………………………………..

Components

SCRT Utility

Platform\IntelTest\SCRT\SCRTApp\SCRTApp.inf
Platform\IntelTest\SCRT\SCRTDriver\SCRTDriver.inf

2. Run Visual Studio .NET 2003 Command Prompt to go to the command line
environment. Then run the commands as shown below:

a. cd C:\Test\UefiSct\Platform\IntelTest\UEFI\X64\

b. set efi_source = C:\Test\UefiSct

c. nmake uefi

If the build is successful, the image files *.efi are created in the directory
C:\Test\UefiSct\Platform\IntelTest\UEFI\X64\uefi\X64\.

If successful, SCRTApp.efi and SCRTDriver.efi are located there also.

2.2.2.3 IPF Build Tip

Follow the steps below to build the IPF tip to include the SCRT utility:

1. Add SCRT Utility SCRTApp.inf and SCRTDriver.inf files into
C:\Test\UefiSct\Platform\IntelTest\UEFI\IPF\Build\UEFI_SCT_IPF.dsc
file [Components] field.

[Components]
…………………………………………………………………………………………………..

Components

SCRT Utility

Platform\IntelTest\SCRT\SCRTApp\SCRTApp.inf
Platform\IntelTest\SCRT\SCRTDriver\SCRTDriver.inf

2. Run Visual Studio .NET 2003 Command Prompt to go to the command line
environment. Then run the commands as shown below:

a. cd C:\Test\UefiSct\Platform\IntelTest\UEFI\IPF\

b. set efi_source = C:\Test\UefiSct

c. nmake uefi

If the build is successful, the image files *.efi are created in
C:\Test\UefiSct\Platform\IntelTest\UEFI\IPF\uefi\IPF\ directory.

12

How to build SCRT

If successful, SCRTApp.efi and SCRTDriver.efi are located there also.

 13

How to build SCRT

14

3
How to Use SCRT

3.1 Overview

As a supplement to SCT, SCRT is used to validate UEFI Runtime Services
implementations for compliance to the UEFI 2.0 Specification. SCRT is invoked under
the EFI shell environment. This chapter describes how to use SCRT utility in the EFI
shell environment and how to analyze the test results.

3.2 System Configuration

To ensure SCRT runs in the runtime environment without unexpected behavior, for
targeted platforms the physical memory on the target machine is limited to the
following rules:

• IA32 architecture-based platform: Physical memory <= 4G.

• The physical memory plugged on board is recommend that less or equal than
4 G Bytes.

• x64 architecture-based platform: Physical memory <= 32G.

• The physical memory plugged on board is recommend that less or equal than
32 G Bytes.

• Itanium architecture-based platform: Physical memory <= 1024G.

• The physical memory plugged on board is recommend that less or equal than
1024 G Bytes.

3.3 Run SCRT Utility

Before using SCRT utility, perform the following:

First, burn the UEFI implementation BIOS image into the machine targeted for test.

Then, obtain the corresponding version, IA32, X64, IPF, of SCRTApp.efi and
SCRTDriver.efi files from the SCT build tip mentioned in Section 2.2.2

Finally, copy SCRT utility, SCRTApp.efi and SCRTDriver.efi, to the device used to
perform SCRT on the target machine.

The following screenshots show the steps to run the SCRT utility in a shell
environment:

15

How to use SCRT

1. When the target machine starts, select the menu Boot Manager as shown in
Figure 1.

Figure 1 Select Boot Manager

2. Select the menu “Internal EFI Shell” in the Boot Manager as shown in Figure
2.

Figure 2 Select Internal EFI Shell

16

How to use SCRT

3. At the shell command line enter the command ‘map -r’ to list your device

name. Then switch to the device where SCRT is located, as shown in Figure 3.

Figure 3 Switch to the device

4. Run the SCRT utility. First run the command Load SCRTDriver.efi, then run
the command SCRTApp.efi as shown in Figure 4. To this point SCRT has

begun to test UEFI 2.0 Runtime Services in the runtime environment.

 17

How to use SCRT

Figure 4 Run SCRT Utility

3.4 Analyze SCRT Test Result

Unlike SCT, SCRT cannot create a test log file in a runtime environment because it
lacks some boot services. But SCRT can print out a similar format test log to COM1
and COM2. And at the same time, SCRT can send debug messages to Port 80. Using
these messages the user can easily pinpoint test error locations.

 COM1/COM2 output

If the target machine tested has either COM1 or COM2 on board, connect them to the
host machine with the proper cable. With the help of terminal software such as
HyperTerminal, take over COM1/COM2 output.

3.4.1

3.4.1.1 Configure Terminal Software

Figure 5 shows how to configure the terminal software. This example assumes use of
COM1. After connecting, the terminal displays the COM1 output correctly.

18

How to use SCRT

Figure 5 Terminal Software Configuration

3.4.1.2 Capture Log Files

Terminal software can capture SCRT test log files as well. Figure 6 shows how to
capture log files.

 19

How to use SCRT

Figure 6 Capture log files

3.4.1.3 Log File Overview

The SCRT log format is similar to SCT log files. SCRT log file is divided into several
groups:

Variable Services Test
Time Services Test
Capsule Service Test
Misc Services Test
Reset Services Test

Each group has the identical log format, and it is similar to a SCT log. The following is
an example of the captured log file of Variable Services Test.

20

How to use SCRT

==================Variable Services Test Start==================

RT.SetVariable - Set a test variable named UEFIRuntimeVariable, should be
EFI_SUCCESS – PASS
BFF7E548-F13A-497C-8E21-AEC237A6CCE3
P:\RC3\TIANO\Platform\SCRTDriver\TestCase.c:73:Status - Success, Expected
- Success

RT.GetVariable - Get the test variable named UEFIRuntimeVariable, should
be EFI_SUCCESS – PASS
F556B5AD-AACE-4BF0-B724-E129EE00EA37
P:\RC3\TIANO\Platform\SCRTDriver\TestCase.c:94:Status - Success, Expected
- Success

RT.GetNextVariableName - The test variable named UEFIRuntimeVariableTest
should be found – PASS
BAC20972-9662-4F24-8AAC-664142B56DDE
P:\RC3\TIANO\Platform\SCRTDriver\TestCase.c:145

RT.QueryVariableInfo - Query Variable Information of the platform should
be EFI_SUCCESS – PASS
8BCDA7A3-2848-413D-BF05-07E1098D42D2
P:\RC3\TIANO\Platform\SCRTDriver\TestCase.c:167:Status - Success,
Expected - Success

==================Variable Services Test End=====================

Similar to the SCT log file, each checkpoint is identified by a GUID. From this GUID,
users can easily locate the corresponding checkpoint. The description for the
checkpoint is printed out, as well as the general PASS or FAILURE test status. An
example follows:

RT.SetVariable - Set a test variable named UEFIRuntimeVariable, should be
EFI_SUCCESS – PASS
BFF7E548-F13A-497C-8E21-AEC237A6CCE3

Additionally, more details about checkpoints are listed, including file name, line
number, the returned status and the expected status.

P:\RC3\TIANO\Platform\SCRTDriver\TestCase.c:73:Status - Success, Expected
– Success

With this format log file, the user can easily find which checkpoint fails and locate it to
the source code.

 Port 80 Display

If the target machine under test has neither COM1 nor COM2, use Port 80 to trace the
test case work flow. For every checkpoint, Port 80 will display a unique hex number.
The number from 00, 01 … 0A, 0B … to 11, 12 is already defined in current SCRT
test cases.

3.4.2

 21

How to use SCRT

 Each Assertion Information

For each assertion, Port 80 displays a unique hex number, while also printing a GUID
and description to COM1/COM2. The relationship is shown in Table 2.

Table 2 shows the detailed information for each assertion in the UEFI SCRT tests. It
can be used by UEFI SCRT users as a case assertion reference.

Table 2 Port 80 display and Log file Relationship for Each assertion

3.4.3

Port 80
Display

GUID Assertion Test Description

01 0xbff7e548,

0xf13a,

0x497c,

0x8e, 0x21,
0xae, 0xc2,
0x37, 0xa6,
0xcc, 0xe3

RT.SetVariable -
Set a test variable
named
UEFIRuntimeVariabl
e, should be
EFI_SUCCESS

1. Call RT.SetVariable with the
special name and Guid. And the
variable is set with 8 Bytes data size.
The return status should be
EFI_SUCCESS.

02 0xf556b5ad,

0xaace,

0x4bf0,

0xb7, 0x24,
0xe1, 0x29,
0xee, 0x0,
0xea, 0x37

RT.GetVariable -
Get the test variable
named
UEFIRuntimeVariabl
e, should be
EFI_SUCCESS

Call RT.GetVariable to get the test
variable just set. The return status
should be EFI_SUCCESS

03 0xd66e4a7f,

0x6d54,

0x4cc0,

0xb9, 0x3b,
0xf6, 0x2f,
0x48, 0x57,
0xa6, 0xff

RT.GetVariable -
The test variable named
UEFIRuntimeVariabl
e should have 8 Bytes
data size.

The test variable get should have 8
Bytes data size.

04 0xaa5c5763,

0x36cd,

0x4f00,

0x84, 0x36,
0xf4, 0xa9,
0xd5, 0xaf,
0x12, 0xfb

RT.GetNextVariable
Name - Get the next
variable name should
be EFI_SUCCESS

Loop to call
RT.GetNextVariableName to get
the next variable. The return status
should be EFI_SUCCESS.

22

How to use SCRT

Port 80
Display

GUID Assertion Test Description

05 0xbac20972,

0x9662,

0x4f24,

0x8a, 0xac,
0x66, 0x41,
0x42, 0xb5,
0x6d, 0xde

RT.GetNextVariable
Name - The test
variable named
UEFIRuntimeVariabl
eTest should be found

Find the test variable in the loop call
RT.GetNextVariableName.

06 0x8bcda7a3,

0x2848,

0x413d,

0xbf, 0x5,
0x7, 0xe1,
0x9, 0x8d,
0x42, 0xd2

RT.QueryVariableIn
fo - Query Variable
Information of the
platform should be
EFI_SUCCESS.

Call RT.QueryVariableInfo to
query variable information. The return
status should be EFI_SUCCESS.

07 0x67b4e72a,

0xc792,

0x4f74,

0x92, 0x1d,
0xea, 0xb3,
0x66, 0x4f,
0x95, 0x3b

RT.GetTime - Get the
current time and date
information should be
EFI_SUCCESS

Call RT.GetTime with NULL
capabilities. The return status should
be EFI_SUCCESS.

08 0xdbb5195f,

0x3584,

0x427d,

0xa1, 0x68,
0x3f, 0x5e,
0x1d, 0x24,
0x3b, 0xb9

RT.SetTime - Change
Time.Year to 2060 to
set the time should be
EFI_SUCCESS

Change the current data to
year=2060. And set time as it. The
return status should be EFI_SUCCESS.

09 0x8e75d9a9,

0x3c14,

0x4095,

0xbe, 0x76,
0xad, 0xcf,
0x55, 0xab,
0x8e, 0x6c

RT.GetTime - Get the
current time to check
whether the
modification happens,
should be
EFI_SUCCESS

Call RT.GetTime to get the current
time. The return status should be
EFI_SUCCESS.

0A 0xe8cd357a,

0xd254,

0x4f7b,

0x92, 0xc3,
0x23, 0xfd,
0x4d, 0xd6,
0xc0, 0xa3

RT.GetTime - The
current time should be
changed to Time.Year
= 2060

The get time should be Year = 2060.

 23

How to use SCRT

Port 80
Display

GUID Assertion Test Description

0B 0x6417f479,

0xa174,

0x4614,

0x80, 0xcd,
0xe6, 0x96,
0x85, 0x8c,
0xd9, 0xfa

RT.GetTime - Get
the current time and
date information to
modify, should be
EFI_SUCCESS

Call RT.GetTime again to modify the
time to set wakeup time. The return
status should be EFI_SUCCESS.

0C 0xd6a3c41a,

0xe6cf,

0x42fc,

0xa0, 0x39,
0x68, 0xf8,
0x39, 0xbb,
0xbf, 0xe3

RT.SetWakeupTime -
Set wakeup time in 1
hour later from now on,
should be
EFI_SUCCESS

Call RT.SetWakeupTime to set wake
up time, the time is 1 hour later from
now on. The return status should be
EFI_SUCCESS.

0D 0xd6b952a9,

0x3d54,

0x4277,

0xbf, 0x60,
0xab, 0xfb,
0x3, 0x71,
0x5, 0xd5

RT.GetWakeupTime -
Get the current wakeup
alarm clock setting
information, should be
EFI_SUCCESS.

Call RT.GetWakeupTime to get the
current wake up time. The return
status should be EFI_SUCCESS.

0E 0x3f65c680,

0xae51,

0x4830,

0xb3, 0xd1,
0xd7, 0xc9,
0x2a, 0xcd,
0x14, 0x8a

RT.QueryCapsuleCap
abilities - Query the
capsule capabilities the
platform supports,
should be
EFI_SUCCESS.

Call
RT.QueryCapsuleCapabilities to
query the capsule capabilities. The
return status should be EFI_SUCCESS.

0F 0x4611524b,

0xbfd2,

0x42d4,

0x85, 0xa8,
0x9b, 0xf,
0xd1, 0xc6,
0x27, 0xd3

RT.GetNextHighMono
tonicCount - First get
next high monotonic
counter, should be
EFI_SUCCESS.

Call
RT.GetNextHighMonotonicCount
to get next high monotonic counter for
the first time. The return status should
be EFI_SUCCESS.

10 0x5c2cbd54,

0x1388,

0x4e87,

0xab, 0x11,
0x2c, 0x12,
0x3d, 0x24,
0x5, 0xbd

RT.GetNextHighMono
tonicCount - Second
get next high
monotonic counter,
should be
EFI_SUCCESS

Call
RT.GetNextHighMonotonicCount
again to get the counter. The return
status should be EFI_SUCCESS.

24

How to use SCRT

Port 80
Display

GUID Assertion Test Description

11 0x9e39a3e3,

0xcbb6,

0x4fcc,

0xb2, 0x21,
0x73, 0x24,
0x79, 0xf1,
0x21, 0x77

RT.GetNextHighMono
tonicCount - Second
get counter should
increase 1 compared
with First get counter

The second call get the bigger counter:

The 2nd counter = the 1st counter + 1.

12 0xda790c1e,

0xdcbf,

0x4c0e,

0xaf, 0xf7,
0x46, 0x3a,
0xc4, 0x47,
0xb0, 0x6e

RT.ResetSystem -
Machine should shut
down! We should never
come here

Call RT.ResetSystem to shut down.
Should never come here.

 System Hang

SCRT validates the Runtime Services implementation in the runtime environment. If
some pointers are not converted, the system hangs. If the system hangs at any
checkpoint, the SCRT records the last step information in the test log file and displays
it in Port 80. With the relationship shown in Table 2, the user could find which
checkpoint hangs easily.

3.4.4

 25

How to use SCRT

26

4
How to Add SCRT Test Cases

4.1 Overview

SCRT is used to validate Runtime Services in al runtime environment. The
functionalities of these runtime services are already covered during boot time, and
users can refer to the test case in the UEFI SCT. Therefore, the SCRT focuses more on
validating whether the runtime service pointer is correctly converted when switch to
runtime environment.

When more detailed test cases for runtime services are needed, users could develop
the required test case, and readily add it to the SCRT infrastructure.

This chapter describes how to add test cases when it is necessary to customize SCRT
test cases.

4.2 Add Test Cases

SCRTDriver in the SCRT utility is responsible for performing the test cases. In
SCRTDriver module, GUID definition for the checkpoints is declared in Guid.h and
Guid.c, and test cases are located in TestCase.c.

To extend the test coverage, the user can add the test cases in TestCase.c and add
the new GUID definitions in Guid.h/Guid.c.

SCRTDriver\
 |----Guid.h1
 |----Guid.c1
 |----TestCase.c2
 |----Print.c
 |----SCRTDriver.c
 |----SCRTDriver.h
 |----SCRTDriver.inf
 |----ia32
 |---- Port80.asm
 |----x64
 |---- Port80.asm
 |----ipf
 |---- Port80.c

Note: Guid.h/Guid.c declares GUID definition.

Note: TestCase.c consists of the test cases.

In TestCase.c, we allow for adding more checkpoints. For each new checkpoint, the
user needs create a new GUID for it and declare it in Guid.h/Guid.c.

27

28

4.3 Example: Adding a Test Case

Because the call Runtime Service UpdateCapsule behaves differently for different
platforms, for example, a system reset, this checkpoint is not included in TestCase.c
as a common test case. Users can add a case in TestCase.c to verify the service like
below.

Here is a sample code to add the checkpoint in EfiCapsuleTestVirtual(),
TestCase.c:

Status = VRT->UpdateCapsule (
 xxxxx,
 xxxxx,
 xxxxx
);

Port80(xxx);

RecordAssertion (
 Status,
 gSCRTAssertionGuidxxx,
 "RT. UpdateCapsule – should be EFI_SUCCESS",
 "%a:%d:Status - %r, Expected - %r",
 __FILE__,
 __LINE__,
 Status,
 EFI_SUCCESS
);

Meanwhile, define gSCRTAssertionGuidxxx in Guide.h and Guide.c as shown below:

In Guide.c:

EFI_GUID gSCRTAssertionGuidxxx = EFI_TEST_SCRT_ASSERTION_xxx_GUID;

In Guide.h:

#define EFI_TEST_SCRT_ASSERTION_xxx_GUID \
{ xxxxxxxx, xxxx, xxxx, { xx, xx, xx, xx, xx, xx, xx, xx } }

extern EFI_GUID gSCRTAssertionGuidxxx;

Filename: SCRT User Guide_Myron_Aug21.doc
Directory: M:\UEFI\WorkingFolder\UTWG
Template: C:\Documents and Settings\tding1\Application

Data\Microsoft\Templates\MasterEFI14.dot
Title:
Subject:
Author: mporter
Keywords:
Comments:
Creation Date: 8/21/2007 9:52:00 AM
Change Number: 9
Last Saved On: 8/21/2007 10:12:00 AM
Last Saved By: mporter
Total Editing Time: 13 Minutes
Last Printed On: 8/21/2007 10:12:00 AM
As of Last Complete Printing
 Number of Pages: 32
 Number of Words: 5,554 (approx.)
 Number of Characters: 31,439 (approx.)

	Contents
	Figures
	Tables
	Revision History
	1 Introduction
	1.1 Overview
	1.2 Related Information
	1.3 Terms
	1.4 Conventions Used in this document
	1.4.1 Data Structure Descriptions
	1.4.2 Pseudo-code Conventions
	1.4.3 Typographic Conventions

	2 How to Build SCRT
	2.1 Overview
	2.2 Building SCRT
	2.2.1 Source Code Overview
	2.2.2 Build Source Code
	2.2.2.1 IA32 Build Tip
	2.2.2.2 x64 Build Tip
	2.2.2.3 IPF Build Tip

	3 How to Use SCRT
	3.1 Overview
	3.2 System Configuration
	3.3 Run SCRT Utility
	3.4 Analyze SCRT Test Result
	3.4.1 COM1/COM2 output
	3.4.1.1 Configure Terminal Software
	3.4.1.2 Capture Log Files
	3.4.1.3 Log File Overview

	3.4.2 Port 80 Display
	3.4.3 Each Assertion Information
	3.4.4 System Hang

	4 How to Add SCRT Test Cases
	4.1 Overview
	4.2 Add Test Cases
	4.3 Example: Adding a Test Case

